Weathering Through the Yachting Season

Weather conditions are generally what drive the popularity of yachting season around the world. Most voyages are seeking the moderately warm breezes, long days, and pleasant waters.  Suffice to say, no one is pursuing 15 ft waves, freezing temperatures, or torrential rains.  While other determining factors such as cultural events, boat shows, and festivals also factor into intended routes, the weather is the general dictator on the scene.

Global pressure patterns will determine where and how wind patterns work, which ultimately control the associated wave heights and relative positioning of ocean currents.  Much like the phrase “work smarter not harder”, yachting also follows the same train of thought:  work with the elements and not against!  Riding with the currents can often save on fuel and can ensure a speedier ride.  It’s no coincidence that many of the global routes follow the natural flow of the water.

Transoceanic voyages often follow the major ocean currents

Another major factor is precipitation patterns, as regional monsoon seasons can make for an extended wet ride. A seasonal wind pattern shift, such as ENSO (El Niño Southern Oscillation), is defined as a longitudinal shift in pressure patterns and winds which occur on average, every 2-7 years.

El Niño typically weaken or reverse the easterly trade winds to become westerly, as seen in this image.  This enhances warmer water to reach the Eastern Pacific, which further increases rain potential.

In the warm phase of ENSO, El Niño, easterly winds weaken or reverse.  This causes the warmer waters to shift from the Western/Central Pacific towards the Eastern Pacific, piling up along the South America coast. The warmer waters instigate thunderstorm development, so in turn, higher precipitation occurs.  Another side effect of the excess water is that it reduces upwelling, which is the ability of the deeper, colder, more nutrient-rich water to make its way to the surface. Ocean currents are related to water temperatures, so this shift alters the local currents.

La Niña enhances the easterly trade winds, forcing water mass to pile into the Western Pacific. As a result, this elevates precipitation in the Western Pacific.   Meanwhile deeper (cooler) water upwells in the Eastern Pacific, which can limit thunderstorm activity.

Conversely, during the cool phase of ENSO, La Niña, the exact opposite occurs:  The easterly winds strengthen, which piles the warmer waters towards the West Pacific.  This migration of water from the East to the West makes it easier for upwelling to occur along South America.  The repositioned warmer waters over the West Pacific increase thunderstorm activity, and therefore precipitation potential.

Further examination of popular global destinations reveal that prime yachting season aligns with capitalizing on the best weather that each location has to offer:

Yearly Chart_300dpi
Peak months for yachting around the world, often follow the seasons.

The tail ends months of peak seasons tend to be the most financially affordable, as they occur while seasons are still transitioning from undesirable winds/rain/temperatures to the more preferred conditions.  While the weather can still somewhat be iffy, this is generally when dock space, berths, and anchorages are plentiful and tourists are minimal.  As yacht owners and charters seek sublime weather, peak seasonal time also brings overwhelming tourists and limited availability, hence higher prices.

PAC Headings
Global boating tracks, created via OceanPassages

Of course some locations are blessed with a year round type yachting season, such as Florida or the Caribbean, maritime SE Asia, or generally anywhere that is located near the equator.  Approximately 12 hours of daylight bless the equatorial regions, with daylight decreasing as you head north of south of this line.  While that ideally works for most of the year, the real caveat occurs when this excessive heat produces or strengthens tropical cyclones.  Rapid intensification or a change in track may force a yacht to redirect its route with minimal notice, or scurry towards an available hurricane hole.

Predicting and tracking the development and movement of tropical cyclones can be very tricky, as it involves a working knowledge of a four dimensional science: How things are changing 1) from east to west 2) from north to south 3) from the surface of the earth throughout the atmospheric column 4) with time. Recent activity surrounding Hurricane Harvey was a prime example of how a tropical system can intensify in a very short amount of time, as it went from a category 1 [74-95 mph] to minimum category 4 [130-156mph] in less than 24 hours.

The open ocean is a nautical playground for many, to which weather writes the rules.  Knowing the best time to take to the high seas is important, to make the best of your adventure and your time!


Category 5 Irma Update – 09-07-17 [12:30 AM ET]

12:30 AM ET
Irma [19.6N / 67.0W]

A little MET101 lesson and potential ray of hope for SoFla.

Let’s get some facts together before we dive in:

1) Hurricanes are generally steered by what’s going on in the middle and upper levels of the atmosphere. Lower levels have little to do with the direction the system will move, so NO, turning all the East Coast fans on at the same time just won’t work.

2) Winds move clockwise around a high pressure, and counterclockwise around a low pressure.

So now observe a few things on the attached gif, which consists of current Infrared Satellite (“sees” infrared values of heat from clouds) and the mid-level wind streamlines (green lines) off the Florida East Coast, around the Central Atlantic High pressure (CATL-H), and further extending off the West Coast of FL.


Irma’s trajectory is about the competition of who’s steering flow will dominate and coax Irma’s movement. The CATL-H looks primed to snatch Irma out of her current driving forces. The steering pattern off the SW Coast of the Floridian Peninsula, associated with the incoming trough over the SE, is rather weak in comparison.

Putting these pieces together, it’s QUITE possible that Irma will indeed shift further E overnight, pulling a Miami/Fort Lauderdale landfall off the table. What’s good for us, means bad for someone else. Depending on IF and HOW extreme the shift is, this could put our friends up in Central/North FL or GA under the gun.

Of course, the CATL-H may:
1) maintain it’s current hold (sorry South Florida)
2) slightly retreat eastward (opening up Irma to being influenced by the incoming trough’s steering flow) – or-
3) build even further westward and force the track to shift slightly back westward (through the FL spine or along the Western half/Gulf side.

Regardless of who will win out, the northerly turn is a pretty sure thing, it’s just about who wins this tug-of-war for Irma’s attention. So basically, with many potentials still out there, keep preparing, keep paying attention, and be ready for whatever happens!

And lastly, no matter whether you evacuated, prepared, or didn’t, consider this a lesson learned for the next time these scenarios come around. Based on the preparations and reports from all over social media, it’s INCREDIBLE how seriously Floridians took this threat. In NO way should anyone feel their course of action was overreacting. You took these warnings seriously, and THIS is what keeps meteorologists going.

More to come…

Category 5 Hurricane Irma Update – 09-05-17 [3:00 ET]

3:00 ET
#Irma [16.9 N / 59.1 W]
Irma is now a category 5 storm with maximum sustained winds of 185 mph.
Things are starting to feel real, for all living in the Lesser Antilles, as the threat nears tonight and tomorrow. Rain bands are bringing in showers and winds of 20mph are already in place, only to get stronger into this evening and here on out.
For those of us in the mainland U.S., preparation should be underway. By this, i mean gathering your supplies or making the decision in how to execute your plan.
1) Knowing where your local shelter is, especially if you need to bring pets. Not all shelters are pet-friendly.
2) If you are under an evacuation, where you would go;
3) Knowing where your important documents [medical, insurance, mortgages, etc] are located;
4) obtaining a refill in prescriptions if needed
There is still no way to tell you if this is going to hit Florida, or even where in FL. There is still model disagreement towards the final land-falling location. Some have it turning a hard right and bumping up along the East Coast (much like Matthew did last year) and heading towards GA/SC, some having it turning and running north, right through the spine of the state. Others still indicate the hard right turn through the Everglades and along the western half of the state. The point being that no one can still tell you exactly where, yet.
HOWEVER, understand this important thought: This system is large. The eye is about 30-35 miles wide. As of earlier this morning, hurricane force winds were extending out about 50 miles from the center. Tropical storm force winds were extending out 150 miles. Florida is only about 110 miles wide. Regardless of your exact location,the likelihood is that at a minimum, tropical storm force winds are in play in your area.
And again, while no one can tell you where, what you can actually see, are emergency managers springing into action, friends and neighbors pulling together to make sure each other stay informed, and there is a reason for this. Preparation is going to be key, because by the time we know for sure where landfall is, it will likely be too late to leave.
More to come…
Satellite animations available on our FB page:

Irma on the Mind???

Current position [18.5 N / 45.9 W]

First thing first. there is still A LOT of variation that can occur 7 days out! So this briefing isn’t to serve as a forecast, but as an explanation as to the components in play.



For the last few days, we’ve been waiting to see how far S and W Irma’s trajectory would dip. Like a ball that must bounce downwards before it bounces upwards, we’ve been closely watching the expected S and W dip that Irma is undergoing this weekend. The system is expected to begin it’s more northward trajectory on Mon/Tue, and therefore a narrowing of potential outcomes will only begin then. And no that doesn’t mean the final answer will appear, but a better picture will be revealed.

Now that WSW motion is indeed in place, but it initiated slightly higher north than previously modeled. A hurricane’s position is a result of the eye location, and to put it plainly, Irma’s been acting pretty shifty-eyed. The reason for this is the multiple occurrences of EWRC [eye-wall replacement cycles]: This is when a larger eye forms around an established eye. The larger eye “chokes” off the necessary moisture and the inner eye collapses. This process does weaken or prohibits further intensification during the process, but it is usually followed by a re-strengthening once the process is complete. So if the location of the eye is slightly changing, then it stands to reason that the point of where we measure it’s S and W movement also shifts.

If you’re following the models, remember that one release does NOT indicate certainty. You’re looking for consistency from run-to-tun. The GFS (American model) comes out 4 times a day. The European model is released twice a day.

Now as mentioned prior, there are many variables that will affect the trajectory of this system: The position of a high pressure located N/NE of the system, an upper level low located to the NW of the system, high and low pressure placement over the U.S. 6-8 days from now, and Irma’s interaction with any landmasses along the way or regions of increased wind shear [how winds change with height].

Three major factors are behind Irma’s current intensity, with the first two working against:
1) Its location in a region of cooler SST’s [sea surface temperatures], but by only about 1-2 degrees cooler than what’s consider tropical fuel.
2) Drier air ahead of the system is slightly wrapping into the inner regions, which dampens cloud/thunderstorm development.

But in the ‘ole gal’s favor is that its in a region of
3) Weaker vertical wind shear of about [10-15 kts] is a hurricane’s dream, as it does not destroy the thunderstorms from building vertically but still provides enough shift to keep the circulation in place.

But….Irma is moving into a region of higher SST’s (pro), moister (pro) air, and higher shear (con).
Considering all involved, further intensification is likely.

OUTCOME: For those in the U.S, take a deep breath, and consider tightening up your hurricane plans, because come next week, the time will come to either 1) pull the trigger or 2) exhale and consider yourself to have conquered yet another week during the 2017 Atlantic Hurricane Season.

But if you’re asking, “What would YOU do”, well, on this end, supplies are in place; because why not. Because what better way to actually relax this labor day weekend than to know whatever happens next week, as the picture sharpens, things are in place now. [Think of people who waited until the last minute to find solar eclipse glasses; how well did that work out?]

So, stay tuned, stay aware, and DO NOT buy into the hype anytime over the next 2 days.


For latest satellite animation, visit us on FB: 

Lessons from El Faro: Forecasts Can’t Guarantee Safety

See the latest Weather Forecast Solutions article at The Maritime Executive magazine about the recently released National Transportation Safety Board report on weather findings surrounding the 2015 sinking of the El Faro during Hurricane Joaquin.

Weather Forecasts Alone Can’t Guarantee Safety

Hurricane Joaquin (USCG / NOAA)

Wall ‘O Waterspouts is Without a Doubt Weather-iffic.

This 2014 image via Bruce Omori of Extreme Exposure Fine Art Gallery is an amazing view of #waterspouts from the Kilauea Volcano in #Hawaii. It may be old but 121% worth the share.


How many do you see? 1, 2, 3, 4, 5, 6, and likely a 7th in formation along the right.

Nature is the best form of entertainment, without a monthly fee!

Severe Weather on the High Seas

Nothing makes a body feel as protected from the elements as a solid set of four walls and an up-to-code reinforced roof, but these protective features may not be present when active weather strikes.  Many seafarers find themselves subjected to harsh elements, putting them at the mercy of the skies above and the waves alongside their trusted vessels.

When it comes to the ocean, nothing “stirs the pot” like the wind; and the winds are a response to pressure differences.  More specifically, winds move from high to low values of pressure, and the greater the differences between the pressure fields, the faster the wind moves.  A good way to visualize this process is to imagine a ball rolling down a hill: the steeper the slope of the hill, the faster the ball will roll. Oh gravity, thou are a heartless force.

Ball Trajectory
The steeper slope will yield a faster speed as a result of gravity.

High pressures can ultimately be thought of as “hills”, the low pressures as the “dips”, and the ball is the “wind”.  So when analyzing atmospheric pressure patterns, much like a contour elevation map would indicate the steepness or grade to a hiker, tightly spaced pressure contours indicate a steep pressure change pattern, hence higher winds.

3D render of Pressure
Winds will flow from high to low pressures, and the steeper the slope, the faster the winds.
Pressure Gradients and Winds_02
Tightened pressure contours between a high and low pressure indicates a steep slope, which yields faster moving winds.

So the wind blows and the waves react as a result. Now depending on the size and location of the pressure patterns, winds and therefore waves of various sizes can be produced and travel away from their origin location.  Wind waves are a result of local winds blowing across the surface of the water that eventually break or reach a shoreline.


If no deterrent is present, these waves have the ability to propagate over hundreds of miles as a result of their momentum.  This is known as groundswell

Waves can often aid a vessel along its course, acting like a turbocharged engine to work in tandem with the boats own gas/diesel power.  However there are the other instances in which the waves become the foe.  Increased wave heights, including the elusive rogue waves can roll and/or even break a vessel, overpower engines or snap rudders, leaving a craft at the mercy of the winds.

While most know the tale of the RMS Titanic, other maritime disasters have encountered similar fates as a potential result of winds and their respective waves. A 656 ft German merchant ship, the MS München, departed Bremerhaven, Germany on December 7th, 1978 on a transatlantic voyage towards Savannah, GA.  In the early morning hours of December 12, the MS München sent out an S.O.S. signal, with its last reported position.  All search efforts were officially called off on December 22, with emergency buoys, life rafts, life vests and belts, and lifeboats retrieved from search operations and random encounters. The MS München was never located, but via investigations done on the salvaged lifeboats, it has been theorized that via severe weather, she likely succumbed to a series of large waves which both broke over the bow and eventually flooded the vessel, causing it to sink.

While it may be easier to associate poor conditions with big patterns, sometimes small scale phenomena can produced localized increases not seen in the big picture.  Two examples of this would be squall lines and water spouts.

Waterspouts can be sub-categorized into tornadic and non-tornadic, as a result of their formation source. The fair-weather types are most frequent, and are considered non-tornadic in nature, meaning they aren’t associated with a supercell thunderstorm as are the rarer tornadic waterspouts. Typical non-tornadic waterspouts start forming on ocean/lake surface and rise up to meet the base of a parent cloud.  They tend to last less than 20 minutes and produce winds less than 70mph, which would classify it as the equivalent of an EF-0 tornado.  Tornadic water spouts are a result of a rotating cloud which produces a tornado that then descends and connects to the surface of a body of water.  While limited in space and time, either type of waterspouts can locally whip up winds and waters, and boaters are advised to stay clear.

Waterspouts in St. Thomas, US Virgin Islands | Photo by Erickson
Waterspouts on the Mediterranean | Photo by Mehmet Gökyigit
Waterspouts off the coast of Turkey | Photo by Tufancetiner

Tornadic waterspouts can also be associated with squall lines, which is a typically narrow but elongated band of intense thunderstorms.  The formation of a squall line in the near or offshore waters is usually ahead with an oncoming cold front associated with a low pressure.  While generally measuring about 10-20 miles wide, squall lines can stretch for hundreds of miles, and are capable of producing, tornadoes/waterspouts, damaging winds, and frequent lightning.  An incoming frontal boundary from the West or Northwest will alter winds in a location as follows:  Initial winds will be from the east/southeast to south, as the winds begin blowing from the local higher pressure towards the incoming lower pressure.  As the frontal boundary nears, winds will become south/southwest, finally becoming west/northwest as it departs. When a squall line approaches ahead of the frontal boundary, wind shifts can be sudden and fierce which leaves little time for vessel preparation.

From the small scale back to the large, no other weather phenomena has the power and expansive reach than that of a tropical cyclone.  The amount of energy generated during the evaporation and condensation processes that produce the clouds/rain is almost 200 times the world’s electrical generating abilities, while the amount generated via the wind is roughly half of the world’s electrical generating abilities.  The movement across the ocean basins can generate long range swells that can be felt several hundred miles away.  Navigating a vessel around the associated increases can be tricky and requires advanced knowledge of environmental factors to determine potential storm trajectories.

Tropical_Vis and RH
Visible satellite, mid-level relative humidity, and steering flow of 2016’s Hurricane Matthew.  This image was produced while Matthew was a category 3 system; less than 8 hrs later, Matthew would briefly strengthen into a category 5 system.  This system made 4 separate landfalls:  Haiti [cat 4], Cuba [cat 4], The Bahamas [cat 3 & 4], and South Carolina [cat 1]

When interaction with a system is imminent, understanding how to circumnavigating via the “Front Right Quadrant” [FRQ] becomes key.  If one was to intersect the system with a “+” sign, the FRQ is defined as the front and right side of the system, relative to the storms forward motion. This is where the storm’s winds work in tandem with the directional wind to produce the highest winds of the cyclone.  In other words, the side to be avoided if at all possible.

The front right quadrant, relative to the direction of motion, indicates where the strongest winds of a tropical cyclone are located.  This is where the systems’ winds work in tandem with the motion.

While there are many hazards out to sea, advanced planning and a working knowledge of the science behind these risks can help minimize disasters out to sea.  Knowledge is power and coupled with a bit of luck, here’s hoping for fair winds and following seas.